Search results for "Wilson polynomials"

showing 6 items of 6 documents

Relative differential forms and complex polynomials

2000

Pure mathematicsMathematics(all)Gegenbauer polynomialsGeneral MathematicsDiscrete orthogonal polynomialsMathematical analysisAskey–Wilson polynomialsClassical orthogonal polynomialssymbols.namesakeMacdonald polynomialsDifference polynomialssymbolsJacobi polynomialsKoornwinder polynomialsMathematicsBulletin des Sciences Mathématiques
researchProduct

Factorization of absolutely continuous polynomials

2013

In this paper we study the ideal of dominated (p,s)-continuous polynomials, that extend the nowadays well known ideal of p-dominated polynomials to the more general setting of the interpolated ideals of polynomials. We give the polynomial version of Pietsch s factorization Theorem for this new ideal. Our factorization theorem requires new techniques inspired in the theory of Banach lattices.

Discrete mathematicsMathematics::Commutative AlgebraPietsch's domination theoremApplied MathematicsDiscrete orthogonal polynomialsClassical orthogonal polynomialsMacdonald polynomialsDifference polynomialsAbsolutely continuous polynomialsFactorization of polynomialsHahn polynomialsWilson polynomialsOrthogonal polynomialsMATEMATICA APLICADAAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Polynomials generated by linear operators

2004

We study the class of Banach algebra-valued n n -homogeneous polynomials generated by the n t h n^{th} powers of linear operators. We compare it with the finite type polynomials. We introduce a topology w E F w_{EF} on E , E, similar to the weak topology, to clarify the features of these polynomials.

Classical orthogonal polynomialsDiscrete mathematicsMacdonald polynomialsDifference polynomialsGegenbauer polynomialsApplied MathematicsGeneral MathematicsDiscrete orthogonal polynomialsHahn polynomialsWilson polynomialsOrthogonal polynomialsOPERADORES NÃO LINEARESMathematicsProceedings of the American Mathematical Society
researchProduct

Factorization of (q,p)-summing polynomials through Lorentz spaces

2017

[EN] We present a vector valued duality between factorable (q,p)-summing polynomials and (q,p)-summing linear operators on symmetric tensor products of Banach spaces. Several applications are provided. First, we prove a polynomial characterization of cotype of Banach spaces. We also give a variant of Pisier's factorization through Lorentz spaces of factorable (q,p)-summing polynomials from C(K)-spaces. Finally, we show a coincidence result for (q,p)-concave polynomials.(c) 2016 Elsevier Inc. All rights reserved.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsApplied MathematicsDiscrete orthogonal polynomials010102 general mathematicsBanach space010103 numerical & computational mathematics01 natural sciencesClassical orthogonal polynomialsDifference polynomialsFactorizationPisier's theoremWilson polynomialsOrthogonal polynomialsSymmetric tensorSumming polynomialsFactorization0101 mathematicsMATEMATICA APLICADAAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

An approximate Rolle's theorem for polynomials of degree four in a Hilbert space

2005

We show that the fourth degree polynomials that satisfy Rolle’s Theorem in the unit ball of a real Hilbert space are dense in the space of polynomials that vanish in the unit sphere. As a consequence, we obtain a sort of approximate Rolle’s Theorem for those polynomials.

Discrete mathematicsClassical orthogonal polynomialsPure mathematicsMacdonald polynomialsRolle's theoremDifference polynomialsGeneral MathematicsDiscrete orthogonal polynomialsOrthogonal polynomialsWilson polynomialsMathematicsMean value theoremPublications of the Research Institute for Mathematical Sciences
researchProduct

On the zeros of Jacobi polynomials

1994

Classical orthogonal polynomialssymbols.namesakePure mathematicsJacobi eigenvalue algorithmGegenbauer polynomialsJacobi operatorGeneral MathematicsOrthogonal polynomialsWilson polynomialssymbolsJacobi methodJacobi polynomialsMathematicsActa Mathematica Hungarica
researchProduct